Exercises for the congruent number problem

Maosheng Xiong

1. Prove Euclid's formula (300 BC): Given (a, b, c) positive integers, pairwise coprime, and $a^{2}+b^{2}=$ c^{2} (such (a, b, c) is called a primitive Pythagorian triple). Then there is a pair of coprime positive integers (p, q) with $p+q$ odd, such that

$$
a=2 p q, \quad b=p^{2}-q^{2}, \quad c=p^{2}+q^{2} .
$$

2. Prove that 2 is not a congruent number, following Fermat's method of infinite descent.
3. The rational point $P=(1,2)$ is on the elliptic curve

$$
E: \quad y^{2}=x^{3}-5 x+8
$$

Using the tangent line and the secant line construction, verify that

$$
\begin{equation*}
2 P=P+P=\left(-\frac{7}{4},-\frac{27}{8}\right) \tag{i}
\end{equation*}
$$

(ii) Let $Q=\left(-\frac{7}{4},-\frac{27}{8}\right)$, then

$$
3 P=P+Q=\left(\frac{553}{121},-\frac{11950}{1331}\right)
$$

4. Given a positive rational number t. A rational number n is called t-congruent if there are positive rational numbers a, b, c such that

$$
a^{2}=b^{2}+c^{2}-2 b c \frac{t^{2}-1}{t^{2}+1}, \quad \text { and } 2 n=b c \frac{2 t}{t^{2}+1}
$$

Prove that n is t-congruent if and only if the following:
(i) Either both n / t and $t^{2}+1$ are nonzero rational squares,
(ii) or the elliptic curve

$$
C_{n, t}: \quad y^{2}=x(x-n / t)(x+n t)
$$

has a rational point (x, y) with $y \neq 0$.

